In this paper, we consider feature screening for ultrahigh dimensional clustering analyses. Based on the observation that the marginal distribution of any given feature is a mixture of its conditional distributions in different clusters, we propose to screen clustering features by independently evaluating the homogeneity of each feature’s mixture distribution. Important cluster-relevant features have heterogeneous components in their mixture distributions and unimportant features have homogeneous components. The well-known EM-test statistic is used to evaluate the homogeneity. Under general parametric settings, we establish the tail probability bounds of the EM-test statistic for the homogeneous and heterogeneous features, and further show that the proposed screening procedure can achieve the sure independent screening and even the consistency in selection properties. Limiting distribution of the EM-test statistic is also obtained for general parametric distributions. The proposed method is computationally efficient, can accurately screen for important cluster-relevant features and help to significantly improve clustering, as demonstrated in our extensive simulation and real data analyses.